Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

TEACHING NATURAL SCIENCE IN PRIMARY GRADES THROUGH DIGITAL TECHNOLOGIES: MODERN APPROACHES AND THE 5E MODEL

Ahmadaliyev Shohruh Bahromjon ugli

Mathematics Teacher, Namangan Regional Academic Lyceum under Tashkent State University

E-mail: <u>shohruh105rus@gmail.com</u> Orcid: 0009-0007-4403-0817

Annotation. This article examines the integration of digital technologies in teaching natural science to primary grade students through the lens of the 5E instructional model. It highlights how modern digital tools—such as interactive simulations, augmented reality, and educational apps—can enhance student engagement, understanding, and inquiry skills. The 5E model's structured phases (Engage, Explore, Explain, Elaborate, Evaluate) provide a pedagogical framework that supports meaningful technology integration. The article discusses the benefits and challenges of this approach and emphasizes its importance in fostering early scientific literacy and digital competence in young learners.

Keywords: Natural science education, primary grades, digital technologies, 5E instructional model, science teaching, interactive learning, augmented reality, virtual labs, inquiry-based learning, early STEM education.

Introduction. In today's rapidly advancing world, understanding natural science from an early age is more important than ever. Primary education serves as a critical period for laying the foundation of scientific knowledge and inquiry skills that children will carry throughout their academic journeys and into adulthood. Traditionally, teaching natural science in primary grades has relied heavily on hands-on activities, textbooks, and teacher-led demonstrations. However, the rise of digital technologies presents unprecedented opportunities to transform how young learners engage with scientific concepts. Digital tools such as interactive simulations, augmented reality, virtual labs, and educational apps have the potential to make abstract scientific ideas more concrete and accessible for young minds. When integrated thoughtfully into the curriculum, these technologies not only capture students' attention but also promote active learning, experimentation, and critical thinking. At the same time, effective pedagogy remains essential to harness these tools meaningfully. The 5E instructional model—consisting of Engage, Explore, Explain, Elaborate, and Evaluate phases—offers a structured, learner-centered framework that supports inquiry-based science education.

This article explores how modern approaches to teaching natural science in primary grades can be enhanced through the integration of digital technologies within the 5E model. By combining cutting-edge tools with a proven educational framework, educators can create immersive, interactive, and personalized learning experiences that inspire curiosity and deepen understanding. Such innovations are crucial for preparing young students to navigate and contribute to an increasingly scientific and technological world.

Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

Table 1: Analytical summary of key literature on teaching natural science in primary grades using digital technologies and the 5E instructional model

Focus/Study	Key Findings	•	Limitations
education	enhances motivation and understanding	importance of teacher preparedness in tech integration	specific to science
5E Instructional Model in science education	effective in conceptual development	integrating digital tools	with limited empirical data
Use of virtual labs in elementary science	Virtual labs improve understanding of complex scientific concepts through interactive exploration	Supports digital tools enhancing the Explore phase of the 5E model	Limited to certain science topics and sample size
Augmented reality (AR) in education	AR increases engagement and motivation, especially during initial phases of learning	Demonstrates potential of AR to enhance the Engage phase	1 1
	1 1	of teacher training	Framework rather than empirical study
Effects of technology on young children's learning	Appropriate digital tools aid learning; poorly designed tech can cause distraction and cognitive overload	importance of age-	Focuses broadly on technology use, not specific pedagogy

Natural science forms the foundation of a child's comprehension of the environment, encouraging inquiry and exploration. Introducing scientific concepts early helps develop observation skills, logical reasoning, and a lifelong interest in STEM (Science, Technology, Engineering, and Mathematics) fields.

The 5E instructional model—Engage, Explore, Explain, Elaborate, and Evaluate—is widely

Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

recognized for structuring science lessons that promote active learning and conceptual understanding.

• Engage: Capture students' interest and stimulate curiosity.

• Explore: Facilitate hands-on investigation and discovery.

• Explain: Guide students to articulate their understanding.

• Elaborate: Extend learning through new challenges or applications.

• Evaluate: Assess comprehension and skills development.

This model aligns well with constructivist theories, emphasizing that learners build knowledge through experiences and reflection. Incorporating digital tools in teaching natural science enriches the learning process by providing interactive, visual, and personalized experiences that traditional methods may lack.

- Interactive Simulations and Virtual Labs: These allow students to experiment with scientific phenomena safely and repeatedly, helping them understand concepts like plant growth, weather patterns, or simple machines.
- Augmented Reality (AR) and Virtual Reality (VR): AR and VR can transport students to immersive environments, such as underwater ecosystems or the solar system, making abstract or distant concepts tangible and engaging.
- Educational Apps and Games: Gamified learning fosters motivation and reinforces scientific concepts through quizzes, puzzles, and challenges tailored to primary learners.
- Digital Storytelling and Videos: Multimedia content can illustrate complex ideas in relatable ways, aiding comprehension and retention.

Teaching natural science in primary grades through digital technologies, guided by the 5E model, represents a forward-thinking educational practice. This approach not only ignites young learners' passion for science but also equips them with the critical skills and technological proficiency necessary for the 21st century. As schools continue to embrace digital transformation, thoughtful integration of these tools with structured pedagogies like the 5E model will be key to nurturing the next generation of scientific thinkers and innovators.

Analysis of literature. Recent educational research underscores the transformative potential of digital technologies in primary science education. Studies by Ertmer and Ottenbreit-Leftwich (2010) highlight that technology integration, when aligned with pedagogical goals, enhances students' motivation and conceptual understanding. Digital tools provide interactive and multimodal experiences that traditional methods may lack, making scientific phenomena more tangible for young learners. The use of the 5E instructional model in science education has been widely supported for its ability to scaffold inquiry and promote deeper comprehension. According to Bybee et al. (2006), the model facilitates active learning by guiding students

Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

through stages of engagement and exploration before moving to explanation and evaluation. This structure aligns well with constructivist learning theories, which emphasize learner-centered, experiential approaches.

Integrating digital technologies within the 5E framework is increasingly explored in contemporary studies. For instance, Chang et al. (2014) found that virtual labs and simulations during the Explore phase of the 5E model significantly improved elementary students' understanding of complex scientific concepts, such as ecosystems and weather patterns. Similarly, Bacca et al. (2014) emphasize that augmented reality (AR) can enhance the Engage phase by providing immersive experiences that capture student interest and foster curiosity. However, the literature also points to challenges in implementation. Teacher preparedness and access to resources remain significant barriers, as noted by Koehler and Mishra (2009) in their Technological Pedagogical Content Knowledge (TPACK) framework, which stresses the need for teachers to develop competencies in both technology and pedagogy. Additionally, Hsin, Li, and Tsai (2014) argue that digital tools must be carefully selected and integrated to avoid cognitive overload in young learners.

Research discussion. The integration of digital technologies into primary natural science education, structured around the 5E instructional model, presents a promising pathway to enhancing student learning and engagement. Research consistently shows that when technology is used purposefully within a well-established pedagogical framework, students demonstrate deeper conceptual understanding and stronger inquiry skills. The 5E model's phased approach aligns naturally with the capabilities of digital tools. For example, the Engage phase benefits greatly from multimedia and augmented reality experiences that capture students' attention and stimulate curiosity. Virtual simulations during the Explore phase allow learners to manipulate variables and observe scientific phenomena in ways that may not be feasible in a traditional classroom due to safety, cost, or resource limitations. These experiences encourage active learning and build foundational scientific thinking.

Furthermore, digital platforms support the Explain phase by enabling students to document and share their observations through videos, digital storytelling, or interactive presentations. This not only fosters communication skills but also encourages reflection and conceptual clarity. In the Elaborate phase, technology provides opportunities for extended investigations and real-world applications, such as creating digital models or collaborating on cloud-based projects, which deepen understanding and encourage creativity. Finally, digital assessment tools can offer immediate feedback during the Evaluate phase, helping teachers tailor instruction to individual needs and track progress more efficiently. This formative assessment capability supports differentiated instruction, a critical factor in early education.

Despite these advantages, challenges remain. Research highlights that the effectiveness of technology integration heavily depends on teachers' digital literacy and pedagogical competence. Professional development focused on blending technology with inquiry-based science instruction is crucial. Additionally, equitable access to devices and reliable internet is a persistent concern, potentially widening achievement gaps if not addressed. Another important consideration is the developmental appropriateness of digital tools for young learners. Overuse of technology or

Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

poorly designed apps can lead to distraction or cognitive overload. Therefore, educators must carefully select resources that are engaging yet suitable for primary students' cognitive and attention spans. In conclusion, current research supports the combined use of the 5E instructional model and digital technologies as a powerful strategy for teaching natural science in primary grades. When thoughtfully implemented, this approach not only fosters scientific literacy and critical thinking but also equips students with the digital competencies essential for the 21st century. Ongoing research and investment in teacher training and infrastructure will be key to realizing the full potential of this innovative educational paradigm.

Conclusion. Teaching natural science in primary grades through the integration of digital technologies within the 5E instructional model offers a transformative approach to early science education. This blend of modern tools and structured pedagogy enhances student engagement, facilitates inquiry-based learning, and deepens conceptual understanding by making scientific phenomena accessible and interactive. The 5E model provides a clear and effective framework for guiding young learners through exploration and reflection, while digital technologies enrich each phase with immersive, hands-on experiences that traditional methods alone cannot fully achieve. However, the success of this approach depends on thoughtful implementation, including careful selection of age-appropriate digital resources, comprehensive teacher training, and equitable access to technology. Addressing these challenges will ensure that all students can benefit from innovative learning environments that foster both scientific literacy and digital skills.

As education continues to evolve in response to technological advancements and changing societal needs, combining the 5E model with digital tools represents a promising pathway for nurturing curious, competent, and confident young scientists ready to thrive in the 21st century.

References

- 1. Bacca, J., Baldiris, S., Fabregat, R., Graf, S., & Kinshuk. (2014). Augmented reality trends in education: A systematic review of research and applications. *Educational Technology & Society*, 17(4), 133–149.
- 2. Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). *The BSCS 5E instructional model: Origins and effectiveness*. Colorado Springs, CO: Biological Sciences Curriculum Study.
- 3. Chang, H. Y., Sung, Y. T., & Chen, S. F. (2014). Effects of virtual labs on elementary school students' scientific inquiry and learning achievement. *Computers & Education*, 75, 101–111.
- 4. Ertmer, P. A., & Ottenbreit-Leftwich, A. T. (2010). Teacher technology change: How knowledge, confidence, beliefs, and culture intersect. *Journal of Research on Technology in Education*, 42(3), 255–284.

Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

5. Hsin, W. J., Li, M. C., & Tsai, C. C. (2014). The influence of young children's use of technology on their learning: A review. *Journal of Educational Technology & Society*, 17(4), 85–99.

6. Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge (TPACK)? *Contemporary Issues in Technology and Teacher Education*, 9(1), 60–70.