Volume 15 Issue 09, September 2025

Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

THREE.JS: A COMPREHENSIVE OVERVIEW OF WEB-BASED 3D GRAPHICS FRAMEWORK

J.J. MUNIROV "ASIA INTERNATIONAL UNIVERSITY"

Teacher of "General technical sciences" department

Annotation: This article explores Three.js, a widely used JavaScript library that simplifies the rendering of interactive 3D graphics on the web. The discussion focuses on its origin, documentation, core structure, features, and applications in different fields. It also examines some challenges such as performance optimization and the learning curve for beginners. Finally, the paper highlights the role of Three.js in future web technologies, especially in virtual and augmented reality.

Keywords: Three.js, WebGL, JavaScript, 3D Graphics, Virtual Reality, Rendering, Web Development

Introduction

The emergence of three-dimensional (3D) graphics in web development has dramatically transformed how users interact with digital platforms. In the early days of the web, creating 3D content required external plug-ins such as Flash or Java applets, which limited accessibility and performance. The introduction of WebGL changed this by offering a native browser API for 3D graphics. However, WebGL is a low-level tool that demands an advanced understanding of computer graphics and mathematics. To make 3D development more accessible, Ricardo Cabello introduced Three.js in 2010. This open-source library abstracts many of WebGL's complexities and provides developers with a higher-level interface. As a result, Three.js has become one of the most popular frameworks for creating interactive 3D environments on the web.

Three.js Documentation Overview. The official documentation of Three.js plays a vital role in its adoption and continued success. It is structured to guide both beginners and advanced users through the process of building 3D scenes. The documentation introduces the concept of a scene as the container for all objects, lights, and cameras. It explains the importance of the camera, which determines the viewpoint from which the scene is observed, and the renderer, which translates that scene into pixels on the screen. Furthermore, the documentation details how objects are constructed from geometries combined with materials, forming what is known as a mesh. Lighting and animation are also explained, allowing developers to create dynamic and realistic visual experiences. The clarity of this documentation, combined with numerous interactive examples, has made Three.js a practical entry point into 3D graphics programming.

Core Features of Three.js. Three.js is appreciated for its simplicity compared to native WebGL. With just a few lines of JavaScript code, developers can render a 3D object such as a cube or sphere, which would otherwise require dozens of lines in pure WebGL. The library provides a

Volume 15 Issue 09, September 2025

Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

broad range of materials, from basic colors to physically based rendering (PBR) surfaces that imitate real-world reflections and textures. Its compatibility with various 3D file formats, including GLTF, FBX, and OBJ, makes it easy to integrate assets created in tools like Blender or Maya. Another strength of Three.js is its support for immersive experiences through WebXR, enabling developers to build virtual and augmented reality applications that run directly in the browser.

Community involvement also strengthens Three.js. The library is supported by thousands of contributors who expand its ecosystem with plugins, extensions, and tutorials. As a result, developers who are just starting out can rely on an abundance of resources, ranging from official guides to forums and open-source projects. This vibrant ecosystem ensures that Three.js remains both accessible and continuously evolving.

Applications of Three.js. The use of Three.js spans multiple fields. In education, interactive 3D models make abstract subjects more tangible, allowing students to visualize molecules in chemistry or planetary systems in astronomy. In entertainment, web-based games take advantage of its lightweight rendering capabilities to deliver engaging experiences without the need for additional installations. The architecture and real estate industries employ Three.js for creating virtual tours and interactive property models, which help clients explore spaces before they are built. Similarly, data scientists use the library for visualizing large datasets in three dimensions, revealing patterns that are difficult to see in traditional two-dimensional graphs. Artists and designers, too, have embraced Three.js, producing interactive exhibitions and creative installations accessible to anyone with a web browser.

Challenges and Limitation. Despite its popularity, Three.js is not without limitations. One significant challenge is performance when rendering highly complex scenes with thousands of objects or detailed textures. Developers must use optimization strategies such as instancing, level of detail management, and frustum culling to maintain smooth performance. Another limitation is the learning curve. Although easier than WebGL, Three.js still requires knowledge of 3D mathematics, including vectors, matrices, and transformations. Beginners often find these concepts challenging when first approaching the library. Additionally, browser and hardware constraints may limit advanced rendering techniques on older or less powerful devices, reducing accessibility in some contexts.

Future Prospects of Three.js. Looking ahead, Three.js is well-positioned to remain at the forefront of 3D web development. One promising direction is its compatibility with WebGPU, the next-generation graphics API designed to surpass WebGL in efficiency and performance. The library is also closely aligned with the growth of immersive technologies such as virtual and augmented reality, as developers increasingly explore the possibilities of the metaverse. Another area of potential development lies in artificial intelligence integration, where machine learning models could assist in automatically generating or optimizing 3D scenes. These prospects suggest that Three.js will continue to play a central role in shaping the future of interactive digital environments.

Volume 15 Issue 09, September 2025

Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

Conclusion

Three.js has transformed the landscape of 3D web development by making complex graphics more approachable for a wide audience. Its well-structured documentation, user-friendly abstractions, and vibrant community have allowed developers to create visually stunning experiences across education, gaming, architecture, data visualization, and art. While challenges remain in terms of performance optimization and the mathematical foundation required, the benefits of using Three.js far outweigh its limitations. As the web evolves toward immersive and intelligent environments, Three.js is expected to remain a cornerstone technology. It is not merely a tool but also a creative platform that bridges technical expertise with artistic expression, thereby enabling a new era of interactive experiences on the internet.

Resources

- 1. Муниров, Д. Д. О. (2024). КАК ОБЛАЧНЫЕ ТЕХНОЛОГИИ СПОСОБСТВУЮТ ЦИФРОВОЙ ТРАНСФОРМАЦИИ. *MASTERS*, 2(8), 44-51.
- 2. Муниров, Д. Д. О. (2024). РОЛЬ СЕТЕЙ В СОВРЕМЕННОЙ ИТ-ИНФРАСТРУКТУРЕ. *WORLD OF SCIENCE*, 7(8), 27-34.
- 3. Муниров, Д. Д. О. (2024). ВАЖНОСТЬ КИБЕРБЕЗОПАСНОСТИ В ЦИФРОВУЮ ЭПОХУ. *PSIXOLOGIYA VA SOTSIOLOGIYA ILMIY JURNALI*, *2*(7), 35-42.
- 4. MUNIROV, J. (2024). THE FUTURE OF CLOUD TECHNOLOGY: DRIVING INNOVATION AND EFFICIENCY IN THE DIGITAL ERA. *Medicine*, *pedagogy* and *technology: theory and practice*, *2*(9), 193-201.
- 5. MUNIROV, J. (2025). REVOLUTIONIZING REMOTE WORK WITH REAL-TIME COLLABORATION TOOLS. *PEDAGOGIK TADQIQOTLAR JURNALI*, *2*(2), 27-31.