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Abstract: This article presents a theoretical and practical analysis of the free and forced
vibrations of a manometric (Bourdon) tube. The deformation and mechanical motion of the
Bourdon tube, which serves as the main working element of the pressure gauge, were modeled.
The mathematical model was developed using Lagrange’s equations, and the vibration equations
were derived. Considering the influence of the viscoelastic medium, the variations in vibration
amplitude and frequency were analyzed. Based on the obtained results, the effect of the tube’s
parameters, material modulus, and geometric dimensions on the stability of vibration was
determined.
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Introduction
The manometric (Bourdon) tube is the main sensitive element of pressure-measuring instruments.
It is a metallic tube bent into a C-shape or spiral form that deforms under the influence of
external pressure and transmits motion to the pointer mechanism through a link and lever system.
However, in high-pressure or vibration-prone environments, the tube itself is also susceptible to
oscillations. This phenomenon leads to inaccuracies in the pressure gauge readings, dynamic
errors, and structural fatigue over time.
The Bourdon tube is a closed, semi-circular, or spiral-shaped metallic pipe that changes its shape
when exposed to pressure. The open end (inlet point) of the tube is connected to the pressure
source (liquid or gas). The external or system pressure enters the tube through this inlet, and the
internal fluid or gas exerts force on the tube wall, causing it to deform.
The closed end of the tube is sealed and mechanically connected to a linkage mechanism. When
the tube deforms (for example, when the C-shaped section expands), the closed end moves
accordingly. This movement is then transmitted to the indicator or sensor mechanism.
Therefore, the dynamic analysis of the Bourdon tube — including the mathematical modeling of
its vibration behavior, determination of its natural frequencies, and investigation of its stability
criteria — holds great theoretical and practical importance in the design and operation of
precision pressure-measuring instruments which is shown in Figure 1.
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Figure 1. Bourdon tube with fixed and free end.
Geometric and Physical Parameters
The Bourdon tube is considered as a curved beam with radius R, wall thickness h, and length l.
The material is assumed to be steel or a viscoelastic alloy.

The state of the mechanical system is defined by the following parameters:

( )tq - angular displacement of the free (end) point of the tube,

( )M t - moment generated by the external pressure,

k - bending stiffness of the tube,

c - internal damping coefficient (dissipation).

Vibration Model Based on Lagrange’s Equation
The equation of motion of the tube is derived using the energy method:

2 21 1, ,
2 2

T I U kq q= =& where I - is the moment of inertia, and U - is the potential energy.

The Lagrange equation can be expressed as:
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where ( ).Q c M tq= - +&

Equation of Motion

( ).I c k M tq q q+ + =&& &

This equation represents the vibration state of the Bourdon tube.
Free Vibration State
Free vibration occurs when there is no external force or pressure acting on the system - that is,
the system vibrates in its natural state. During free vibration, the tube initially deforms under
pressure, and when the pressure is suddenly released, the tube tends to return to its original
position due to inertia and performs oscillatory motion. In this case, the open end of the tube is
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fixed (boundary condition – clamped base).If there is no external excitation, ( ) 0M t = , the
equation of motion becomes:

0.I c kq q q+ + =&& &
The general solution of this equation is:

0
0( ) sin( ),t

dt e tzwq q w j-= + where 2
0 0, , 1 .

2 d
k c
I kI

w z w w z= = = -

Here, 0w - ​ is the natural frequency and z - is the damping ratio.
Forced Vibration State
Forced vibration occurs when an external force or a time-varying pressure continuously acts on
the system, causing sustained oscillations.
In the Bourdon Tube
In the Bourdon tube, a variable pressure (for example, a sinusoidal signal) is applied to the inner
surface of the tube through the open end and can be expressed as:

0( ) sin( )mp t p p t= + W

Under the influence of external pressure, the internal forces within the tube vary with time. The
closed end of the tube performs periodic motion (vibration) in response to this effect.

If the external excitation frequency Ω is close to the natural frequency of the tube 0w ​ , a
resonance phenomenon occurs. When the external force is given as

0( ) sin( )M t M t= W , the equation of motion takes the form 0 sin( )I c k M tq q q+ + = W&& &

where 0M - ​ is the moment caused by the external pressure, and W - is the frequency of
external excitation. The steady-state solution of this equation is

( ) sin( )t A tq y= W - , where the amplitude is expressed as

0

2 2 2 2
0 0

/

( ) (2 )

M I
A

w z w
=

-W + W

Effect of the Viscoelastic Medium

If the tube is made of a viscoelastic material, the elastic modulus E is considered a time-
dependent function: ( )0( ) 1 tE t E e ba -= - ,

where 0E ​ is the initial modulus of elasticity, and α, β are viscoelastic parameters.
In this case, the stiffness of the tube also becomes time-dependent:

( )0( ) 1 tk t k e ba -= - .
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Thus, the vibration amplitude gradually decreases over time, and as the energy dissipation
increases, the system becomes more stable.
Numerical Example
For the Bourdon tube, let the following parameters be given:

530 , 200 , 1.5 , 2 10 .R lmm mm mm mh aE= = = P=

The bending stiffness is determined as ,EIk
Rl

=

quad
4

9 42.5 10 .
64

I mDp -= » Then, the natural frequency is calculated as

0 115 /c.k
I

radw = » This value represents the fundamental vibration frequency of the Bourdon

tube.

Results and discussion
The natural frequency of the tube strongly depends on its material stiffness and radius. As the
radius increases, the overall stiffness decreases, resulting in a reduction of the vibration
frequency. For tubes made of viscoelastic materials, the rate of energy dissipation is high,
causing the vibration amplitude to decay more rapidly. In the case of forced vibrations, a
resonance phenomenon ( 0wW » ​ ) may occur, which can lead to errors in the manometer
readings.
The open end of the tube is connected to the pressure source and serves as the source of forced
vibration, while the closed end acts as a movable point that undergoes deformation and performs
oscillatory motion.
Free vibration occurs when the system moves under its internal energy and gradually decays due
to damping. Forced vibration, on the other hand, is sustained under continuous external pressure
excitation, where the risk of resonance remains significant.
Distinguishing between these two vibration states is essential for improving the measurement
accuracy and reliability of manometric instruments.
The conducted analysis shows that evaluating the vibration behavior of the Bourdon tube is
important for ensuring the accuracy and stability of pressure-measuring devices. By
appropriately selecting the material modulus, tube radius, and wall thickness, the effects of
vibration can be minimized. When viscoelastic materials or damping coatings are used, the
amplitude decays faster, resulting in enhanced overall system stability.
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