
Volume 15 Issue 10, October 2025
Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

http://www.internationaljournal.co.in/index.php/jasass

583

DOM AND JAVASCRIPT TECHNOLOGIES

Hamroyev Bobirjon Bakhritdinovich
Asia International University,

Teacher of the Department of “General Technical Sciences”

Abstract: The Document Object Model (DOM) is an object-oriented representation of web
documents that enables programmatic access and manipulation through JavaScript. DOM and
JavaScript together form the core technologies behind dynamic, interactive, and responsive web
applications. This article explores the structure of the DOM, fundamental APIs, event handling
techniques, efficient manipulation methods, and performance considerations. Furthermore, it
compares traditional DOM operations with modern approaches such as Virtual DOM, Shadow
DOM, and reactive libraries (e.g., React and Vue) to highlight the practical applications of
DOM/JS integration.

Keywords: DOM, JavaScript, Document Object Model, Event Handling, DOM Manipulation,
Shadow DOM, Virtual DOM, Web Performance

Introduction

With the evolution of web development, static web pages have transformed into rich, interactive
applications. In modern browsers, every HTML document is represented as a DOM tree — a
structured collection of nodes and objects that can be accessed and modified using JavaScript.
Through the DOM, developers can dynamically create, delete, and modify elements, update
attributes, manage CSS classes, and handle user events in real time.The purpose of this article is
to examine the integration of DOM and JavaScript from both theoretical and practical
perspectives and to provide recommendations for effective and efficient usage.

Main Body

What Is the DOM and How It Works

The Document Object Model is a platform- and language-independent interface that represents
an HTML or XML document as a tree structure. The root of this tree is the document object,
from which we access document.documentElement (usually <html>), followed by <head> and
<body>. Each element in the document is a node with its own attributes, children, and parent
references.

Core JavaScript APIs for DOMManipulation

Some of the most commonly used DOM APIs include:

Selectors:getElementById, getElementsByClassName, getElementsByTagName for traditional

http://www.internationaljournal.co.in/index.php/jasass
http://www.internationaljournal.co.in/index.php/jasass


Volume 15 Issue 10, October 2025
Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

http://www.internationaljournal.co.in/index.php/jasass

584

access.querySelector and querySelectorAll for modern, CSS-style selection.Element Creation
and Modification:createElement, createTextNode, appendChild, insertBefore, replaceChild,
removeChild — used to construct and modify the DOM tree.Attributes and
Classes:element.classList, setAttribute, and getAttribute to manage element properties and
styles.Content:innerHTML and textContent are used to set or retrieve element content. Note:
innerHTML can introduce XSS vulnerabilities if used with untrusted data.

Events and Event Handling

Events are the core mechanism for interaction within the DOM. Common event types include
click, input, submit, keydown, and many others.Inline Handlers: e.g., <button onclick="..."> —
outdated and not recommended.addEventListener: element.addEventListener('click', handler) is
the modern method, allowing multiple listeners per event.Event Object: Properties such as
event.target, and methods like preventDefault() and stopPropagation() provide fine-grained
control.

Event Delegation is a powerful pattern for handling events efficiently. Instead of attaching
handlers to many individual elements, a single handler on a parent element can manage events
for all children, using event.target to determine the source.

DOMManipulation and Performance

DOM manipulation is inherently costly because each change can trigger reflow and repaint
operations in the browser. Efficient strategies include:Batching Updates: Use
DocumentFragment or manipulate elements off-DOM, then insert them all at once.Minimizing
Reflows: Avoid mixing reads and writes of layout properties (e.g., avoid repeatedly querying
offsetHeight during modifications).Class Swapping: Apply multiple style changes by toggling a
single class rather than applying many inline changes.Virtual DOM: Libraries like React use
virtual trees to calculate minimal diffs, applying only necessary changes to the real DOM.

Shadow DOM and Componentization

The Shadow DOM is part of the Web Components specification. It allows encapsulating an
element’s internal structure and styles, shielding it from external CSS and scripts. This enables
reusable, isolated, and modular components — a key principle in modern frontend
development.Using innerHTML to insert external content can expose applications to XSS
(Cross-Site Scripting) attacks. Sanitizing user input or preferring textContent ensures safer
rendering.

Modern Libraries and the DOM

Modern frontend frameworks abstract away much of the manual DOM manipulation:React:
Uses Virtual DOM to compute and apply the minimal necessary updates.Vue/Svelte: Utilize

http://www.internationaljournal.co.in/index.php/jasass
http://www.internationaljournal.co.in/index.php/jasass


Volume 15 Issue 10, October 2025
Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

http://www.internationaljournal.co.in/index.php/jasass

585

reactive data binding to automatically synchronize data and view.However, understanding how
the real DOM works is essential, since these abstractions rely on DOM principles for rendering,
event propagation, and accessibility.

1. Changing Text Content Dynamically

const title = document.querySelector('.title');
title.textContent = 'New Title';
2. Event Delegation

document.querySelector('#list').addEventListener('click', (e) => {
const item = e.target.closest('.item');
if (item) {
console.log('Clicked:', item.textContent);
}
});
3. Efficient Element Insertion with DocumentFragment

const frag = document.createDocumentFragment();
for (let i = 0; i < 100; i++) {
const li = document.createElement('li');
li.textContent = `Item ${i}`;
frag.appendChild(li);
}
document.querySelector('#list').appendChild(frag);

Conclusion

DOM and JavaScript together form the foundation of modern web application development. A
solid understanding of DOM structure, APIs, event handling, delegation, performance
optimization, and security is essential for building efficient and scalable user interfaces. Modern
libraries simplify this process but rely on these underlying concepts. Mastering DOM and
JavaScript technologies empowers developers to create dynamic, secure, and high-performing
web experiences.

References

1. Baxridtdinovich, H. B. (2024). PYTHON DASTURLASH TILI VA UNING
DASTURIY TA'MINOT SOHASIDAGI O'RNI. MASTERS, 2(12), 41-48.
2. Baxridtdinovich, H. B. (2024). NEYRON TO'RLI TARMOQLAR. WORLD OF
SCIENCE, 7(12), 42-48.
3. Хамроев, Б. Б. (2024). PYTHON: ОСНОВЫ НАУКИ И

http://www.internationaljournal.co.in/index.php/jasass
http://www.internationaljournal.co.in/index.php/jasass


Volume 15 Issue 10, October 2025
Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

http://www.internationaljournal.co.in/index.php/jasass

586

ИННОВАЦИЙ. MASTERS, 2(12), 49-56.
4. Baxridtdinovich, H. B. (2025). THE IMPORTANCE AND APPLICATION OF
POLYMORPHISM IN PYTHON. PEDAGOGIK TADQIQOTLAR JURNALI, 3(2), 120-123.
5. Bakhritdinovich, H. B. (2025). APPLYING ABSTRACTION IN PYTHON
PROGRAMMING. ИКРО журнал, 15(01), 237-241.

http://www.internationaljournal.co.in/index.php/jasass
http://www.internationaljournal.co.in/index.php/jasass

	DOM AND JAVASCRIPT TECHNOLOGIES
	Hamroyev Bobirjon Bakhritdinovich
	Asia International University,
	Teacher of the Department of “General Technical Sc
	Abstract: The Document Object Model (DOM) is an ob
	Keywords: DOM, JavaScript, Document Object Model, 
	Introduction
	With the evolution of web development, static web 
	Main Body
	What Is the DOM and How It Works
	Core JavaScript APIs for DOM Manipulation
	Events and Event Handling
	DOM Manipulation and Performance
	Shadow DOM and Componentization
	Modern Libraries and the DOM
	Conclusion

