eISSN: 2229-3213 pISSN: 2229-3205

Volume 16,Issue 01 January , 2026

MODERN CHALLENGES AND PROSPECTS IN MODELING COMPLEX HEAT AND
MASS TRANSFER PROCESSES

Olim Abdurakhmonov

Bukhara state technical university, Republic of Uzbekistan, Bukhara.
Omondullayev Behzod Farhodovich

Teacher Presidential school in Bukhara, Republic of Uzbekistan, Bukhara.
Dzmitry Karpovich

Belarus state technical university, Minsk, Republic of Belarus.
omondullaev.bekhzod@gmail.com

Keywords

Coupled heat and mass transfer, multiscale modeling, phase-change dynamics, advanced
materials, microwave-assisted vacuum drying, surrogate modeling, physics-informed machine
learning, uncertainty quantification, digital twins, computational fluid dynamics, model
validation.

Abstract

Reliable modeling of coup led heat and mas s transfer is a cornerstone of
technolog ical pr ogress in energy systems, advanced manufac turing, ¢ nvironmental
engineering, and  biomedical applications. However, as modern systems increasingly exhibit
mul tiscale behavio r, material heteroge n eit 'y, and strong interphysics interactions, the
limitations of traditional modeling strategies a re becoming increasingly apparent . This
paper presents a detailed analysis of the key ch allenges facing t his field, along with a
structured assessment o f new computational and methodological approac h e s
devel oped to address them. The analysis f ocuses on several cri tical obstacles, including
the exponential growth in ¢ omplexit y in multiscale formulations, accurate representation of
phase transit ion boundaries, mo deling and ch aracterization of advanced and
unconventional mate ri als, and persiste nt shortcomings in high-quali ty valid ation
data. Based on a synthes is of rec entadvan c¢ esin hig h-performance co mputing,
physics-based machine learning, and hybri d model ing metho ds, this paper identifies
promisi ng avenues for overcoming these limitati ons. Resul ts from represe ntative case
studies demonstrate that surrogate a nd reduced-order models can provide an order of
magnit u de increase in computational efficiency, while comparative evaluations hi  ghlight
the rapidly expanding role of data-drive n met hods in predictive modeling. We argue that
future progress in heat and mass tra nsfer modeling wil 1 depend on th e development of
integrated systems that tightl y couple fundamentally based models with dat a-driven
components, in  corporate rigorous unce rtainty quantifi cation, and enable th e creation
of experimentally validated digital twins . This integration signals a fund amental shif t
from p ur ely physical simulations to ad ap tive, intelligent computing systems
cap ab leo fcontinuous improvement.

Key challenges shaping contemporary modeling

Contemporar y heat and masstra nsfer modeling is const rained by a set of tig  htly
coupled challenges that defi ne the limi ts of cu rre nt computationa 1 capabilitie s. A
primary d ifficulty arises from the extreme multi-scale character of the g overning
phenomena. Relevant processes span  from nanoscale interfacial effects to full system
beh avior, creating a fundamental modeling barr ier. For insta n ce, accur ately
simulating metal ad d itive manufacturing demands spatial coverage acro ss roughly five
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order s of ma gnitude—f rom micron- scale laser—material interactions to centimeter-
scale components—and tem poral res olution extend ing over as many as seve nteen
orders, from nanosecond laser pulses to the long- term evolution of residual stresses over
years.  This vast scale disparity leads to rapidly escalati ng computational costs: direct
numeric al simulations of porous structur es with approximately 10 ¢ cel s can require on
the order of 10* CPU hours, whereas homogenized m odels re duce the costto ab out
1 0% hours but at the expense of 15— 40% loss in accuracy for interfacial transport
predictions. Additional complexity is introduced by phase-change pro cesse s and moving
boundaries, w hich inv olve strong nonlinearities that undermine traditional empirical
¢ orrelations. In boiling heat transfer, for exa mple, standar d predictive mode Is can yield
errors exceeding 50% w  hen applied to micro-str uctured surfa ces, posin g serious safety
concerns. Interface - capturi ng techniques such as the Volume-of -Flui d m ethod
typically suffer from cumulative mass co nservat i on errors of 1-5% per time step. A t
the same time, critical microscale effects near co nt act lines often re quire mo lecular
dyna mi cs simulation s, which are r estricted to domains on the or der of 100 n m,
1 eavi ng a persist ent and unresolved gap  between atomis tic and continuum
descriptions. In  multip hase appl ica tions such as spr ay cooling, the problem is further
amplified by high sensitivity to initial c onditions, where mod est uncertainties (e.g., £10% in
droplet diameter) can  lead to variations of up to £35% i n predicted heat flu x. Mate rial
beha vi oraddsy et another layer of difficulty . Many advanced m at erials deviate
markedly fro m classical Fourier and Fick tran sport law s. Carbon nanot ube—based
composites, fo r instance, can exhi bit thermal conductivity anisotrop y a pproaching
300%, while engineered metama terials may achieve effective thermal co nductivities
reduced by as much as 70% co m pared to thei r base constitu ents. Biologica |
tissue s present even greater variability, with porosity ranging from 20% to 90% and
permeability spanning eight o rders of magnitude (10" # to 107 m?). Su ch diversity
necessitates material-specific constitutive formulations, as generalized correlations tend to fail
severely beyond their calibration domains. These technica 1 ob sta cles are
co mp ounded by a pervasive lack of reliable data. Although numerical simulat ions
routinely generate massive datasets, rigorous experimental vali dation remains 1 imited.
Analy ses of stud ies pu blished between 2018 an d 2 023 indicate that only about
32% include quantit a tive ¢ omparisons wi th experiments, and just 18 % re port
uncerta inty estimates for both numerical and experimental results. Experi mental techniques
themselves impose additional constr aints: methods such as micro- PIV a nd infrared
thermography are typically limited to  spatial resolutions of around 10 yman d tempor al
resolu t 1 ons of approximately 1 ms, whic h are often coarser than tho se
a chieva ble in simulations. Moreover, comprehensive material characterization across a
range of operating conditions may require betwe en 10° a nd 10* individual
measureme nts, re  sulting in  substantial time and co st barr iers th at hinder thorough
model validation
Table 1.

Quantitative Overview of Modern Modeling Challenges.

Challenge Typical Computationa Accuracy Key
Category Scale Range 1 Cost Limitation Bottleneck
Multi-scale 107¢ to 10° 10>-10* CPU 15-40% Scale
problems m spatial, 10~ | hours interface error coupling,
to 10# S computational
temporal expense
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Phase- Interface Moving
change thickness: 10°— | 10°-10° CPU hours | 1-5% mass | boundaries,
dynamics 10°m error/step microphysics
Advanced Property Non-classical
materials anisotropy: 10'-10* CPU hours | 20-50% behavior,
100-300% correlation error | heterogeneity
variation
Data Resolution Experimental: 10-25% Access, cost,
validation gap: 107'-10% | 10>-10* points measurement instrumentation
um, 105-1073 s uncertainty limits

These inte rconnec ted pro blems—com putational, physical, material, and
empirical—create a self-perpetuating cycle in which model limit ations limit un derstanding
of the system, which in tur n limits model improve ment. Break ing this cycle requires not
just incremental adv. a nces in indiv 1 dual areas , but also comprehen sive
approaches tha t simultaneously address multiple problematic aspects.

Modeling prospects for the drying process of black currant fruits

The modeling challenges describe d above ha ve catalyzed dramatic changes in
compu tational methods, the integration of d ata scie nce , and algorithmic innovation,
collect 1vely offering ways to overcome traditional limitations. High-performance
comput ing has dramatically expa nded the bo undaries of possible modeling, and
exasc ale system s like th e 1.7 exaFlops Frontier supercomputer have reduced the
r untime of detailed turb ulent combu sti o n simulations from months to days.
Heterogeneo us architectures combining CPUs with GPUs and specialized accelerators
hav e d emonstrated particularly significant benefits, de livering 20-50x speedup s for
lattice Bolt zmann simulatio ns th rough m ass ive para llelizati o n  of
st reami ng collisi on proc essing operations. This hardware revolution enables
previousl vy intractable multiscale simulations, but computational power alone is not sufficient
to address all ch allenges—algorithmic innovatio ns mu st compleme nt hardware
a dvances. Regarding the fruit dr ying proce ss , this study presents a  mathematical
model of blackcurrant drying in a microwave-assisted vacuum drying system. The model
describes the interr elated heat and mass trans fer mechanisms occurri n g dur ing
micr owave vacuum drying an d takes into account the influenc e of applied microwave
energy and r educed pre ssure on moist ure removal and tempe rature distributi on
within the materi al. T he developed m odel, characterized by a high degree o f detail,
d escribes the blackcurrant fruit drying process and, therefore, includes a large nu mber
of adjustable parameters. Am ong these , three key process parame ters w ere selected
as having th e greatest impact on drying efficiency and pr oduct quality:
m icrow a ve power P, fruit layer thickness h, and atmospheric pressu re p. Among the
model output variables, the most important are three time-dependent functions:

¢ the average moisture content of the layer Wavg(t)

e the rate of change of the average moisture content dWavg(t)/dt

e the average temperature of the layer Tavg (t). The calculation of these functions is
carried out using the following formulas:

— 24 =
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The relationship between the input parameters of the model and its output characteristics is
schematically illustrated in Figure 2.
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Figure 2. Formulation of the theoretical research problem.

Based on the proposed scheme (Figure 1), the theoretical study requires solving the
following optimization problem [1-3]:

Lies (P,h,p) — min;
(dW /dt) (P,h,p)—) max;
. (Ph p)—> min.

cp.max
Boundary conditions for the heat and mass transfer problems are defined by the following
equations: (5, 6)

W = W7 — kw (W Wz o ;) At, (5)
T%T_:l = T;'T XT (TiT Te‘m) At. (6)

Key takeaways and future prospects: bridging challenges and solutions

The discussion presented in this a rti cle leads us to a key con clusi on: heat and
mass transfer modeli ng is undergoing a transformational shift drive n by the need to address
mode rn chal lenges such as multi scale phenomena, co mplex int erphase dynamics,
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m a terial heterogeneity, and limited expe rimental d ata. Progress in this  field is
increasing ly driven not by in cremental refine ments of traditional continuum
a pproac hes, but by the targeted integrati on of co mputation al physics, data-driven
methodolog ies, an d rigorous uncertainty quantification wit hin holistic, i ntelligent
systems. Remarkably, recent adv ances—illustrated by 50- to 1000-fold increases  in
compu tational efficienc y without sacrificing accuracy thanks to hybrid approaches
combining phys ics and artificial int elligenc e—demo nstrate that these promises are
not merely conc ept u al but lead to concrete, substantial impro vement s. This
synthesis suggests that f uture practition ers will work less as specialist s in a single
numerical method and more as systems architects coordinating mechanistic mo dels, surrogate
data-based tools , and verifi ¢ ation st rategies to solve problems previously consid ered
intractable.
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Figure. Microwave drying kinetics of black currant fruits.

The graph illustrates the microwave drying kinetics of black currant fruits over 70 minutes.
It shows three key variables:

1. Average moisture content (W(t), blue solid line): starts at 80% and decreases rapidly
during stage III (7—15 min), then gradually approaches a minimum of ~3—5% by stage VI.

2. Rate of moisture change (dW/dt, orange dashed line): peaks around 10 minutes,
indicating the fastest dehydration, then declines to near zero as drying completes.

3. Average temperature (T(t), green dash-dot line): rises quickly from 20°C to ~90°C during
the initial stages, then slowly increases to ~100-110°C in stage VII.

The stages I-VII are annotated above the graph, highlighting: initial state, rapid heating,
rapid dehydration, slow dehydration, product layer consolidation, final drying, and post-drying
heating.
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